Expert Systems in the Micro-electronic Age

EDITED BY DONALD MICHIE
FOR EDINBURGH
UNIVERSITY
PRESS

779

Solving Mechanics Problems using Meta-level Inference
A.Bundy, L.Byrd, G.Luger, C.Mellish and M.Palmer
Department of Artificial Intelligence, University of Edinburgh

50

SGLVING MECEANICS PROBLEMS
USING META-LEVEL INFERENCE

Alan Bundy, Lawrence Byrd, George Luger, Chris Mellish & Martha Palmer

In. this paper we shall describe a program (MECHO), written in Prolog [14],
which solves a wide range of mechanics problems from statements in both pre-
dicate calculus and English. MECHO uses the technique of meta-level inference to
control search in natural language understanding, common sense inference, model
formation and algebraic manipulation. We argue that this is a powerful technigue
for controlling search while retaining the modularity of a declarative knowledge
representation.
Keywords: Natural Language, Mathematical Reasoning, Search Control, Meta-
level Inference, Predicate Calculus, Mechanics. :
This work was supported by, SRC grant number B/RG 94493 and an SRC re-
search studentship for Chris Mellish. This paper was also delivered as an invited
talk to the 6th IJCAI held in Tokyo in August 1979.

1. INTRODUCTION

The work described in this paper addresses the question of how it is possible to
get a formal representation of a problem from an English statement, and how it

is then possible to use this representation in order to solve the problem. Our pur-
pose in studying natural language understanding in conjunction with problem sol-
ving is to bring together the constraints of what formal representation can actually
be obtzined with the question of what knowledge is required in order to selve a
wide range of problems in a semantically rich domain. We believe that these issues
cannot be sensibly tackled in isolation. In practical terms we have had the benefits
of an increased awareness of common problems in both areas and & realisation
that some of our techniques are appliczble to both the contro} of inference and
the control of parsing.

Early work on solving mathematical problems stated in natural language was
done by Bobrow (STUDENT — [1]) and Charniak (CARPS — [5]). However,
the rudimentary parsing and simple semantic structures used by Bobrow and
Charniak are inadequate for any but the easiest problems. Our intention has been
to build on advances in natural language processing (eg [18]) in order to study
parsing and problem solving in a domain which requires sophisticated knowledge
about the world. The domain we have been working in is that of mechanics pro-
blems, which deal with idealised objects such as smooth planes, light inextensible
strings, frictionless pulleys etc. The idealised nature of this domain made it feas-
ible to consider building an expert inferential system which would be able to
cope with a wide range of problems. To date, our program has tackled problems
in the areas of: pulley problems, statics problems, motion on smooth complex
paths and motion under constant acceleration. Qur intention is to continue £x-

Solving Mechanics Problems using Meta-level Inference 51

panding this in order to force generality into our solutions. In recent years a lot
of similar work has been in progress on Physics-type domains such as ours. {eg
[131, [7]. [15], [11]). We have been concerned to adopt methods developed

by these workers into MECHO, and to solve mechanics problems tackled by them.

2. DESCRIPTION OF THE PROGRAM

The block diagram (fig 1) gives a very general overview of the structure of the
MECHO program. Each block represents a closely related collection of Prolog
clauses (procedures), the arrows between blocks indicate invocation/communic-
ation links. (For practical reasons MECHO is split into three separate modules,
but this is irrelevant to the overall structure). The accompanying diagram (fig 2)
tries to capture the changes in representation and the various types of knowledge
required during the execution of the program. The following discussion will el-
aborate on these.

: Intermediate
SYNTAX |—» SEMAKNTICS Data-Base
Handler
PROBLEM
: DATA
—" soLvire
MECEHO BASE
Data Base
Manager/
Unit Conversion Inference
Control
ALGEBRA
PACKAGE i

Figure 1. Program bleck structure

Input to the program is in the form of English text. An example taken from

the area of pulley problems would be:

‘Two particles of mass b and c are connected by a light string passing

over a smooth pulley. Find the acceleration of the particle of mass b.”

(Taken from [10].) (1)
The purpose of the natural language module is to produce a set of predicate cal-
culus assertions which will enable the problem solver to solve the problem. This
objective of producing a symbolic representation of the ‘meaning’ of the problem
statement has been used by us as a vehicle for exploring syntax-semantics inter-
action. The syntactic parser calls semantic routines as soon as possible in order
to interpret fragments of text and quickly reject inappropriate syntactic choices.

BUNDY ET AL. 52

{ TEXT

Reference SYNTACTIC
Filtering SERUCTURE
Direct ASSERTIONS
Input

W

Dictionary
Crammar Rules

{ Semantic Structures

Meta-level Information
Inference Rules
Physical Formulae

i Schemata

EQUATIONS /
INEQUALITIES
3 | Rewrite Rules
’ NUMERIC/

SYMBOLIC SOLUTION

Figure 2. Representation structures

The work of the syntax routines divides into clause syntax and phrase syntax.

The purpose of syntactic analysis at the clause level is to establish clause boun-
daries and, within each clause, to prepare the ground for the semantic analysis of
the main verb. Clause analysis thus involves identifying the start of new phrases,
assigning syntactic roles to the phrases and performing phrase analysis to inter-
pret the internal structure of the phrases. The ifternal phrase analysis typically
retumns simply a referent (and some typing information) to the higher levels. This
means that preliminary reference evaluation is carried out locally, with the inform-
ation conveyed by a phrase being captured in assertions produced as ‘side effects’
by semantic routines called during the analysis. These semantic routines are res-
ponsible for interpreting what it means for a given cbject to have a certain pro-
perty, and indeed for checking whether or not it can have the property. Domain-~
specific information concerning typing, idealisation and object-property possi-
bilities is used to answer these questions. Failure of the semantics indicates that
the parse is invalid. The following (simple) example shows the kind of meta-level
structures used in this process.”

meaning (light, Object, mass (Object, zero)).
type_.constraint (light, physobj).

“The meaning predicate states-that the-meaning of applying the property light to
an object, is that the object has a mass of zero. type_constraint asserts that being
a physical object is 2 necessary condition to having the property light.

The notation used here, and in following examples, follows the Prolog convention
that names starting with an upper-case letter are logical varizbles which are purely local
to the structure (Prolog clause). Atoms, which are in lower case, and compound terms
all stand for themselves. Rules are of the form ‘P + Q & R’, meaning ‘if Q and R then P
Most exampies have undergone slight cosmetic alteration.,

Solving Mechanics Problems using Meta-level Inference 33

It is interesting to note that the declarative assertions which give the meaning
of a phrase can be specified independently of how they will be used. Metadevel
information concerning the state of the analysis is used to determine whether
they are used to add new information or to test necessary constraints on previous
information, (This is basically the 'given’/'new’ distinction discussed in {8}).

One of the aspects of natural language understanding that has interested us es-
pecially is the way in which criteria of semantic well-formedness can be vsed to
resolve cases of ambiguity in reference evaluation. Our program incorporates a
full deductive mechanism, as opposed to semantic markers, to capture the global
semantic constraints that arise during the interpretation. Reference evaluation
proceeds continuously during the combined syntactic and sermantic analysis with
semantic information being used to filter sets of possible candidates for referents.
The method used to achieve this in a general way is basically that of Waltz filter-
ing [16]. As can be seen, the referent returned by the phrase syntax is likely to
be incompletely specified and for this reason all interaction between the semantics
and the data-base is handled by an intermediate data-base handler which imple-
merts the inference system and reference filtering system over these referents,

The syntactic structure built By the clanse syntex specifies a main verb, amd
positions such as 'logical subject’ and 'logical object’ are filled by referents. (We
do not construct a complete parse tree as such). From this structure a set of as-
sertions is generated by invoking semantic routines. The semantic analysis of the
verb maps the main verb onto a base verb and establishes 2 mapping between the
syntactic roles of the clause and the deep roles associated with the base verb. As
a result the referents are fitted into conceptual slots in a2 way similar to conven-
tional "caseframe” analysis. The base verb then specifies the assertions (in terms
of the referents) which follow from this mapping. Base verbs differ from case
frames in that while they attempt to generalise collections of related verbs, they
are not defined in terms of universal primitive reles or slots.

Given a satisfactory parse of a sentence, which produces a set of consistent as-
sertions and disambiguates the referents, we are then able to produce a set of as-
sertions (by instantiating out the referents) about the objects in the probiem.
These are supplied to the problem solving module. As an example, the assertions
produced for the above problem statement (1) would be:

isa{period, period 1)

isa(particle pl1)

isa(particle p2)

isa(string s1)

isa(pulley puil)

end(sl,end! right)

end(s1,end2 left)

midpt{sl midpt1)
fixed_contact(endl pl periodl)
fixed _contact(end2,p2 periodl)
fixed _contact(midptl pull,periodl)

BUNDY ET AL. 54

mass(pl,mass],periodl)
mass(pl,mass2 period1)
mass(s],zero,periodI)
coeff(pull,zero)
accel(pl,al,270,periodl)
accel(p?,a2,90,periodl)
measure(mass1,b)
measure(mass2,c)
sought{al)
given{massl)
given{mass2) (2

In addition the following schema is cued:
cue pullsys_stan(sysl,pull,s1,pl,p2 periodl)

The cueing of schemata is necessary to provide extra information, defaults etc,
which are not given explicitly but are house rules’ in this domain (e.g. that the
pulley in a pulley system has negligible weight). We cue schemata, fairly simpli-
stically, by recognising key wordsand certain object configurations. For example
the following structure asserts that z pulley-system schema can be cued if objects
can be found which satisfy the ideal-type constraints and have certain relation-
ships betweea each other.

sysinfo(pullsys,
[Pull,Str,P1,P2],
[puiley string,solid,sclid] ,
[supports(Pull,Str},
attached(Str,P1),
attached(Str,P2} .
1.

The effect of this cue would be to invoke a schema such as:

schema(pullsys,
[Pull,Str,P1 P2], Time,
{ constaccel(P1,Time),
constaccel(P2,Time),
cue stringsys(Str,{Lpart,Rpart]),
{tension(Lpart,T1,Time)
« coeff(Pull zero) &
tension{Rpart,T,Time))
1.
{ coeff(Pull,zero),
mass(Pull,zero, Time) 1).

This schema asserts that in a standard pulley problem the objects undergo cons-
tant acceleration, the tension in both parts of the string are equal if there is no

Solving Mecharnics Problems wsing Meta-level Inference 33

friction (only one rule shown), and that the friction and mass of the pulley de-
fault to zero if not otherwise given. (This example has been somewhat simplified).

The predicate calculus notation can be used to input problems directly to the
problem solver — and in fact research on the problem solver has resulted in it
being able to tackle a wider range of problems than the natural language modude
can currently handle. The representational principles behind these assertions view
the objects of Newtonian Mechanics in terms of simple zero and one dimensional
objects (points and lines) which are typed and have properties and relations de-
fined over them. For example particles, pulleys, spatial points, moments of ¢ime
are all types of POINT while rods, strings, paths (trajectories), and periods of
time are types of LINE. Physical quantities, such as length, velocity, force etc.,
form the other main branch of our type hierarchy - (see [41.

The work of the Problem Solver divides into types of task. There is the overall
strategic task of deciding what to do, how to solve the problem by producing equ-
ations which solve for unknown quantities (including intermediate unknowns
introduced during the solution). On the other hand there is the tactical task of
combining the input assertions with general facts and inference rules in order to
prove required goals. We shall discuss each of these in turn.

Our overall strategy is a general goal directed algorithm for equation extraction
developed from a study by David Marples of student engineers [12]. For instance,
suppose al, the acceleration of particle pl, is the (only) sought unknown. (Here
we continue the example started.above (1942)). Resolution of forces about pl
will be chosen to solve for al and this produces the equation:

—mass].g + tension] = massl.zal 3)

All possible force contributions on pl are examined and since plisattached to
the end of the string this results in the string being considered. tensionl was for-
merly unknown but the function properties of the predicate tension’ enable it

to be created (see later} to allow the equation to be formed. We have to introduce
tension! as an unknown because it is not possible to solve for al without doing
$0. [Tie nexUstep 18 1o so1¥e 101 Lension 1" willcl! 15 2 1010e auu IvoLves Ulv sty
s1. Again resolution of forces is selected — pl, pull, p2 being chjects on the

string that are possible candidates for resolving about. pl has been previcusty

used and cnly p2 can be used without introducing unknowns. The result is the
equation:

mass2.g — tension] = mass2.al 4)

These two equations can be solved to produce a solution for al.

The input assertions provide meta-level information about whether certain
quantities are sought or given. The Marples Algorithm works by traversing the
list of sought unknowns in a fixed order: the (quantity) type of each unknown
being used to provide a shortlist of formulae that could solve for it, and the def-
inition of the guantity (ie thé assertion which introduced it) being used to find
the physical objects, times and angles involved. Notice that there is a distinction
made between 'formulae’, which are composed of variables over quantities (eg

BUNDY ET AL. 56

'F=M * A"), and ‘equations’ which are instantiations of formulze (eg (3) and (4)
abave). In the Marples algorithm we are reasoning about-the properties of form-
ulae in order to successfully produce appropriate equations.

Before the application of a formula to produce an equation, there is a stage of
-gualitative analysis where general facts about the problem are used tc decide
applicability. Our interest here is in exploring the selective use of meta-level
reasoning to guide the equation extraction process. As well as deciding applica-
bility we have to prepare a situation within which to apply a formula. This may
involve, for example, collecting together all the objects connected to a particle
if we wish to resolve forces about it. General independence criteria (eg "You
can't resolve forces about the same object in linearly dependent directions’) are
also used to eliminate redundant equations.

The following are (simplified) examples of the meta-level structures used dur-
ing the above examples:

kind(al ,accel,
relaccel(pl earth,al 270 peried1)).

relates(accel,
[resolve constaccel—N relaccel]).

prepare(resolve relaccel(P earth,A Dir,Time),
situation(P,Set,Dir,Time))
«—ijsa(particle P} &
findall(X, sameplace(X,P,Time), Set).

isform(resolve situation(Obj,Set,Dir,Time},
F=M*A)
«mass(Obj, M ,Time) &
accel{Obj,A DirTime) &
sumforces(0bj,Set,Dir;Time, F).

The kind predicate asserts that al is a guantity of type accel defined in the given
relaccel assertion. relates states that all the formulae whose names are given in
the list, contain variables of type accel and therefore can be used io solve acceler-
ation. prepare gives the criteria for constructing the situation within which to re-
sotve forces, and the isform predicate defines the equation by defining the mean-
ing of its component variables.

The equation extraction algorithm is two pass in that it first tries to produce a
solution which does not introduce new uakanowns before allowing the introduction
of extra (intermediate) unknowns which are added to the unknowns list and have
to be eventually solved for. Notice that the quantities manipulated are purely sym-
bolic; they can be introduced by the creation mechanism (see later) without their
values being known at this stage (e.g. when the first equation (3) was formed in
the zbove example, the quantity tensionl was introduced without the program
knowing, or trying to find, its actual value). As can be seen, it is the Marples algo-
rithm which will eventuaily produce an equation which solves for tension1.

Solving Mechanics Problems using Meta-level In 1ference 57

The data-base stores all the facts supplied by the English statement, but to
bridge the gap between the explicit information derived from the problem state-
ment and that needed to selve the problem the program requires a general know-
ledge of mechanics which is formalised in a set of inference rules. An example of
such (object-level) inference rules would be:

relaccel(P1,P2 zero,Dir,Period)
constrelvel(P1,P2 Periad).

constrelvel(P1,P2 Period)
fixed__contact(P1,P2,Period).

The first rule says that the relative acceleration between two points of reference

is zero if there is a constant relative velocity between them (over a certain period),
and the second rule says that two points of reference have a constant relative vel-
ocity if they are in contact (again, over a certain period). The inference rules are

a set of Horn clauses which have been hand ordered and contain certain typing
information to guide selection. The search strategy is depth first, with pruning of
semantically meaningless goals, and while this could be improved upon, current
performance has not yet necessitated such a step.

An important part of our work has been the investigation of search control
mechanisms which will enable effective use of this wealth of implicit knowledge.
All requests to retrieve assertions from the data-base, either directly or via infer-
ence, are handied by the inference control module. This module uses information
from the request along with meta-information and inference rules iman atternpt
to satisfy the goal. The first step involves nomalisation of the goal to remove syn-
tactic sugar or to express it in terms of 4 smaller set of underlying predicates.

This is performed with a one pass rewrite rule set. The resulting goal is then classi-
fie¢ according to the instantiation state of its component arguments and the pos-
sibility of using function propertiesand certain other mathematical properties of
the predicate (such as reflexivity, symmetry and transitivity). This information is
used to select appropriate proving strategies. (A basic strategy of 'unit preference’
will always first check the data-base directly).

Our two most important strategies are the use of function properties to prune
search and the use of equivalence class type mechanisms to direct it. The represent-
ation treats what would normally be considered functions as predicates with extra
control information. Being a function means that certain arguments are uniquely
determined by certain other arguments. For example, in the predicate “tensiomr
(String,T Time)’ the actual tension T is determined once the String and the Time
have been given.

These function properties can be used to prevent useless inference if another
{different) value of a function argument is already known (unigueness property):
to create new entities to satisfy a goal if all attempts at inference have failed {ex-
istence property); and to avtomatically eliminate backiracking by disregarding
choices made during inference (uniqueness again). Examples of the meta-level
structures used by the program in performing the above are:

BUNDY ET AL. 58
A\

rewrite(accel(P,A,Dir,Time),
relaccel(P earth,A Dir,Time),
strategy{dbinf) }.

metal refaccel, 5,
[P1,P2,A Dir,Time],
[pt_of _ref,pt—of_ ref accel angle,time] ,
function([P1,P2 Time] => [A,Dir]))

The rewrite rule tells us that any accel predicate can be rewritten to a relaccel
predicate with the earth as the other point of reference, and that the standard
inference strategy is then applicable. The meta predicate specifies the argument
types and the function properties of the predicate relaccel.

The second major strategy, which provides an alternative to using the inference
rules, is a general similarity class mechanism based on equivalence class ideas. Pre-
dicates which are (pseudo-) equivalence relations and would normally produce
self-resolving inference rules are defined in terms of this mechanism. A tree is
used to represent similarity class membership and the goal (such as ‘being in the
same place”) is proved by establishing equivalence of roots. This can be seen as an
alternative (and less explosive) axiomatisation of these predicates. Qur extension
over traditional uses of this method has been to allow labelled arcs and calculation

~during the tree traversal. Thus predicates like "vector separation’ and 'relative vel-
ocity’ which have pseudo-equivalence properties can also use this strategy. Here
is an example of a structure used in these cases:

rewrite(sameplace(P,Q,Time),
[samectass(P,Q ;touch(Time)),
merge(P,Q,touch(Time)) |,
strategy(simclass) .).

This states that the predicate sameplace shouid use the general sameclass mechan-
ism on the particular tree touch(Time). Also specified is an updating mechanism
for adding new sameplace assertions; in this case it would involve merging two
separate trees.

These general strategies can be applied to a wide range of predicates and often
-capture important facts about the domain {eg the fact that an object cannot be
in two places at once is a fact about the function properties of "at(Object Place,
Time)"). The explicit control of new object creation coupled with the goal directed
backward reasoning method of the Marples algorithm results in a create/consider
“by-need type of behaviour. Restrictions, such as 'don't create’ or 'don't infer’,
can be added to the request for a goal to be proved and this enables the Marples
algorithm to be selective over its use of the Inference Contrel in accordance with
its needs at the time.

For some mechanics problems a process of prediction is required to answer
questions like ‘Will the particle reach the top of the slope if it starts with velocity
V 9°. Each question about the motion of a particle on a complex slope unpacks
into a series of questions about the behaviour on simple parts of the slope. Some

Solving Mechanics Problems using Meta-level Inference 59

of these can be answered immediately on the basis of the qualitative shape of the
slope, but others involve the solution of inequalities containing unknown quant-
ities. These unknowns are declared as sought and the equation extraction algo-
rithm is called to solve for them. The prediction system is special purpose and
built around problems similar to those tackled by De Kleer, i.e. motion problems.

Since the equations produced by the equation-extraction algorithm are in
terms of symbolic quantities, there is a stage of Unit Conversion where the zc-
tual values are substituted and a final unit system is selected — conversion factors
being added where appropriate. (Some problems involve a combination of zll
sorts of different units - feet, yards, miles......). The two equations produced
above ((3) & {4)) are very simple in that no particular units are involved. The
only step will be the substitution of b and c for mass! and mass2 respectively
giving:

—b.g + tensionl = b.al (5)
¢.g — tensionl = c.al (6)

The set of simultaneous equations and/or inequalities produced by the problem
solving module is passed to the algebra module (PRESS) which will solve them to
produce a final answer to the problem. Let us look at how PRESS produces 2 sol-
ution for al given (5) and (6). The two equations are solved by isolating tensionl
in the second eguation (which was intended to solve for tensionl), and then using
the result as a substitution into the first equation. This final result can then be
simplified with al being isolated on the left hand side to give the final answer:

al =g.(c—b) / (ctb) Q)

The extension of equation solving techniques to inequalities (there are interest-
ing connections) has enabled us to solve the inequalities produced by the pre-
diction problems, but in addition we have found that the information required
to justify the use of certain rewrite rules is often of the form ‘ only if X> 0’ etc.
Solving and proving inequalities is therefore of direct use within the system.

However, PRESS was not developed purely as a service program for MECHO.
It was intended as a vehicle to explore ideas about controlling search in math-
ematical reasoning using meta-level descriptions and strategies [3]. Rather than
usiag-exhaustive application over a large-set of rewrite rules, it uses the meta-
level strategies of isclation, collection and attraction to carefully control applic-
ation of several different sets of rewrite rules. This selectivity has many advan-
tages: principled methods for guiding search cut down useless work, identical
rules may be used in different ways (eg left to right or right to left) in different
circumstances without causing problems, and theoretical requirements such as
proof of termination of the rewrite rules are made much easier.

When PRESS is used as 2n equation and inequality sclver (ie as a module of
MECHOQ), it classifies the equations {inequalities) to be solved so as to generate
guidance information. An exciting area of research that we would like to expand
on is that of designing inclusion and ordering criteria to classify algebraic iden-

A

BUNDY ET AL. - 60

- tities which are produced by a theorem power. This would enable the system to
automatically learn new rules. The use of meta-level reasoning to place new rules
into a framework where they will be selectively and correctly applied overcomes
many of the obvious ‘explosion’ and "looping’ problems that would occur with
haphazard additions to a Jarge rewrite rule set.

3. DISCUSSION

Throughout the above discussion of the MECHO program we have constantly
emphasised the importance of 'meta-information’ in controlling search. This has
been applied in the rejection of semantically meaningiess parses, the control of
inference, the extraction of equations and the guiding of algebraic manipulation.

The theme that has emerged from our work is the benefit to be gained from
axiomatizing the meta-level of the domain under investigation and performing
inference at this level, producing object level proofs a3 a side effect. This is the
methodology investigated by Pat Hayes in the GOLUX project {9], except that
we have developed our meta-level representation for a particular domain rather
than adopting general purpose representations based on resolution theorem prov-
ing systems. .

In [2] we showed how GPS could be viewed in this way. At the object-level
the search space can be viewed as an operator/state OR tree in which the states

.are nodes 2nd the operators are arcs between them. At the meta-level the search
space can be viewed as a method/geal AND/OR tree in which the goals are nodes
and the methods are arcs between them. A simple depth-first search at the meta-
level then induces a highly complex, middle-out search at the object-level.

In order to make clear the distinction we are drawing between meta-level and
obiect-levei representations in MECHO, we shall list examples of the descrip-
tions used at each level. When defining a notation it is usual to define the cons-
tants, variables, function symbols and predicate symbols of the language; and
then to show how terms and formulae can be formed by composing them to-
gether with the logical connectives. We shall foilow this type of outline in an in-
formal fashion. (To avoid confusion with eadier terminology we shall use the
words ‘assertion’ and rule’ to replace 'formula’).

At the object-level we have the following kinds of primitive:

constants pl,endl, mass2, al, right, 90, 270, lbs, feet, ste.
variables P1, Str, Period, Accel, F, M, etc.

function symbols +, *, cos, etc.

predicate symbols accel, relaccel, mass, fixed_contact, etc.

These are formed into terms such as ‘M * A’ and assertions such as 'F=M * A',
'accel(pl,al,270,periodl)’ ete. Finally, logical connectives are used to form these
assertions into inference rules like:

relaccel(P1,P2 zero,Dir,Period)
«constrelvel{P1 P2 Period).

Solving Mechanics Problems using Meta-level In iference 61

The only function symbols at the object-level are for straight forward arithmetic
and trigonometric functions. This is because we have recorded function properties
by making meta-level assertions about object-level predicates.

At the meta-level all these object-level descriptions are meta-constants along
with additional meta-constants for schema names, formula names, object types,
strategy types etc. As examples of meta-level primitives we have:

constants (Any object level description). physobj, pulisys, resolve, particle, line,
length, dbinf etc.

variables Type, Eqn, Goal, Strategy, Expri, etc. (see below)
furrction symbols Constructors for lists, sets, bags, etc.

predicate §ymbols meaning, sysinfo, schema, kind, relates, isform, rewrite,
meta ete.

Again these can be formed into meta-terms and meta-assertions and we gave sev-
eral examples during the program description. What we shall now examine are the
meta-rules which are formed from these assertions. (These use the same logical
connectives as the object-level rules). We shall take simplified examples from each
of the four main areas of our work.

The first example is a rule ased by the Natura] Language module, which spe-
cifies the conditions for a property to be correctly applied to a particular entity.

attribute(Property Entity State)
~—type_constraint(Property Type) &
isa(Type Entity) &
meaning(Property Entity Assertion) &
consistent{Assertion,State).

This rule states that a particular Property can be attributed to an Entity in a given
State (of the parse), if the Entity satisfies the type_constraint of the Property,
and if the meaning of the attribution is consistent with ail the other assertions in
the current State. (If, for example, the Assertion was ‘mass(s1,zerc)’ then this
would involve checking that no other mass was known for s1. It is here that we
see one of the key connections with our work on Problem Solving, since this is
precisely a matter of 'function properties'!).

The foliowing s an example taken from the Marples Algorithm, and it defines
the requirements for an equation to solve for a particular quantity.

solves_for(Q,Eqn)
< kind(Q,Type.Defn) &
relates(Type F_list) &
select(Formula,F__list) &
prepare(Formula Defn Situation) &
isform(Formula,Situation,Eqn).

This rule states that Eqn solves for Q if Q has type Type and Formula is 2 forgm!a

BUNDY ET AL. 62

that relates Type quantities to other quantities, and if Situation is the situation
within which to apply the Fermulagiventhe Defn of Q,and if Bqn is the instan-
tiation of the formula in the given Situation. It can be seen that this rule is a direct
axiomatisation of our earlier description of how the Marples algorithm extracts
equations. (The select goal would specify the qualitative guidance and apply the
.independence criteria (given extra arguments)).

I a similar way we give the following example of rules which describe how the
Inference Control uses function properties.

is_satisfied(Goal)
<« rewrite(Goal Newgoal Strategy) &
decompose(Newgoal Pred,Args) &
meta(Pred N,Args, Types,Func_info) &
method(Strategy Func_info Newgoal).

method(strategy(dbinf),
furtetion(Férgs = > Vals), Newgoal)
< all_.bound(Fargs) &
use_ function_properties(Newgoal).

The first rule states that Goal is satisfied if it rewrites to Newgoal whose predicate
symbel has certain Func.. info, and if 2 method is used based on the Strategy and
this Func_info. (Certain arguments to meta have been ignored). The second rule
states that the normal inference method will prove Newgoal given its function
properties if all the function arguments, Fargs, are bound, and if object-level in-
ferencing is performed using function property pruning.

As a final example we take a rule concerned with algebraic equation solving.
This rule is interesting in that while PRESS does not currently use it, it could be
derived from rules PRESS does have. Automating this procedure would be an in-
teresting area for study.

solve(U Exprl ,Ans)
«—occ(UExprl,2) &
collect(U,Exprl Expr2) &
isolate(U,Expr2,Ans).

This rule states that Ans is an equation which solves for U given Exprl if Exprl
contains two occurrences of U, if Expr2 is an equation derived from Exprl in
which these two occurrences have been collected together, and if Ans is an equa-
tion derived from Expr2 in which U has been isolated on the left-hand side.

All the above rules can be seen as classifying object-level descriptions and using
this information in deciding what to do. However the effects are very different in
the different areas. In the natural language processing meta-level rules monitor
object-level assertions, rejecting sermnantically unacceptable consequences of a
parse. In equation extraction the effect is to select eguations using a means/ends
analysis technique. In Inference Control the result is use of the most effective
axiomatisation for the goal in hand, and in Algebraic manipulation multiple re-

Solving Mechanics Problems using Meta-level Inferenice 63

write rules are selectively brought to bear on expressions. Thus relatively simple
meta-level search strategies can induce a wide variety of complex object-tevel be-
haviours.

These meta-inference technigues were strongly suggested by our use of the
programming language Prolog. The fact that Prolog procedures are also predicate
caleulus clauses and the fact that predicate calculus has a clear semantics, encour-
- ages the user to attach meanings to his procedures and these meanings are usually
metastheoretic. However, Prolog as a programming language only offers a single
level of 'syntactic’ structures (atoms, compound terms etc.), and a lack of care
can lead to a blurring of theoretical distinctions. During the development of
MECHO, a lack of emphasis (realisation?) of these distinctions resulted in a mix-
ing of object and meta levels (for example, the use of Prolog variables to represent
variables at both levels, the mixing of object and meta level agsertions in rules
such as isform). We plan to remove these aberrations.

Weyrauch’s work on the FOL system (See [17]), is of impertance in relation
to this need for zn adequate theoretical formalism. The distinction between the
object-level and the meta-level is fundamentai within his system, and his use of
"reflection principles’ is designed to capture the relation between these levels. We
feel that his work is of direct value to workers in the field of expert systems, such
as ourseives.

The principle of utilising "knowliedge about knowledge' is becoming increasingly
important in practical Al programs. Davis and Buchanan [6] classified four dif-
serent kinds of meta-level knowledge used by their TEIRESIAS system. They rep-
resent knowledge about objects and the data-structure used to describe them in
schemata and describe the argument type characteristics of their functions in tem-
plates. Their program can classify and build models of the inference rules it uses
and-meta-rules are used to guide the choice of inference rules to be used and the
order of using them. In MECHO, the Natural Language and Inference Control
modules both use information like that stored in TEIRESIAS templates. MECHO
metalevel inference rules are similar in spixit to TEIRESIAS meta-rules except
that the MECHO rules are more general purpose and they generate a variety of
different search strategies in different contexts.

4. CONCLUSION

In this paper we discussed MECHO, a program for solving mechanics problems. We
have shown how the technique of using and controlling knowledge about the do-
main by inference at the meta-level, can be applied to a range of different areas.
Many workers in the field (e.g. [91, (6], [17]1), have argued that controlling search
by using meta-level inference is superior to built-in, smart search strategies because
the search information is more modutar and transparant. The argument s for sys-
tems to make explicit the full knowledge involved in their behaviour, which in
turn aids the modification of their data and strategies, thus improving their robust-
ness and generality. This leads the way to systems which could automatically mod-
ify their strategies and explain their controi decisions.

BUNDY ET AL. 64

. We conclude that meta-level inference can be used to build sophisticated and
fléxible strategies, which provide powerful techniques for controlling the use of
knowledge, while retaining the clarity and modularity of a declarative knowiedge
representation.

5. REFERENCES

L.

10.
11.

12,

13.
14.

15.

16.
17
18.

Bobrow, D. Narural Language input for « computer solving systent. PhD thesis,

MIT, 1964,

Bundy, A. ‘Computational models for probiem solving” Learning and Problem Solving
{part 3}, The Open Univ. Press, 1978. Units 26-27 of the Open University Cognitive
Psychology Course D303.

Bundy, A. & Welham, R. Using Meta-level descriptions for selective application of
multiple rewrite rules in algebrate manipulation. Forthcoming working paper, Dept. of
Artificial Intelligence, Edinburgh, 1975.

Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R. and Paimer, M. Mecho: A program
to solve Mechanics problems. Working Paper No, 50, Dept. of Artificial Intelligence,
Edinburgh, 1979. ’

Charniak, E. Computer solution of caleulus word problems, pages 303-316. IICAL 1969.
Davis, R. & Buchanan, B.G. Meta-lgvel knowledge: overview and applications, pages
920-927. LJCAIL, 1977.

De Kleer, I. Qualitative and quantitative knowledge in elassical mechanies. Technical
Report AFTR-352, MIT Al Lab, 1973,

Haviland, $.E. & Clark, H.H., What’s new? Acquiring new information as a process in
comprehension. Journal of Verbal Learning and Verbal Behaviour 13:512-521, 1974,
Hayes, P. Computation and deduction. Czech. Academy of Sciences, 1973.
Humphrey, D. fntermediate Mechanics, Dynamics. Longman, Grezn & Co., Londen,
1957.

Larkin, J. Problem solving in Physics. Technical Report, Group in Science and Math-
ematics Education, Berkeley, California, 1977.

Marples, D. Argument and technique in the solution of problems in Mechanics and
Elecrricity. Technical Report CUED/C-Educ/TRI, Dept. of Engineering, Cambridge,
England, 1974.

Novak, G. Computer understanding of Physics problems stated in Natural Language.
Technical Report TR NL30, Dept, Computer Science, Univ. of Texas, Austin, 1976.
Pereira, L.M., Pereira, F.C.N. and Warren, D.H.D. User’s guide ta DEC-gystem-10
PROLOG. Technical Report, DAI, 1978,

Stallman, R.M. & Sussman, G.J. Forward reasoning and dependency-directed back-
tracking in e system for computer-aided circuit analysis. Technical Report No. 380,
MIT Al Lab, 1976. .

Waltz, D. Generating semantic descriptions from drawings of scenes with shadows.
Technical Report MAC AI-TR-271, MIT Al Lab, 1972,

Weyhrauch, R.W. Prolegomena to a theory of iechanized jormal reasoning. RWW
Informal Note 8, Stanford University, 1979.

Winograd, T. Understanding Natwral Language, Edinburgh University Press, 1972,

